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Ludoku: A Game Design Experiment

Cameron Browne, RIKEN Institute

This article provides a practical example of designing a game from scratch, using principles
outlined in previous articles in this column: where to start, what to aim for, trouble-shooting the
design, and how to evaluate the outcome. The resulting game, called Ludoku, is a Sudoku variant
that simplifies the basic Sudoku design while introducing new strategies without adding undue
rule complexity.

1 Introduction

I N previous instalments of this Games Design
Patterns column, I have tried to outline prac-

tices conducive to good game and puzzle de-
sign [3, 4, 9, 10, 11]. In this instalment, I put my
own words into practice, to show how they may
be applied to design a new puzzle game.

This article describes the game thus derived,
called Ludoku, then goes on to summarise the
design process, the game’s strengths and weak-
nesses, and the general success of the exercise.

1.1 Ludoku

Ludoku is a Japanese-style logic puzzle [6] de-
rived from Sudoku [8]. Figure 1 shows a typical
challenge with 17 starting hints. The complete
rules for playing Ludoku are given in the follow-
ing blue box.
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Figure 1. A Luduko challenge with 17 hints.

Ludoku is played on a 9×9 square grid, with
some hint values shown. The aim is to fill the
grid with numbers 1..9 such that:

1. No number is repeated in any row.

2. No number is repeated in any column.

3. The diagonal neighbours of a number do not
repeat that number or each other.

Rule 3, the local diagonal neighbourhood rule,
is illustrated in Figure 2. Consider the region
formed by the diagonal neighbours of the central
cell with the value 4 (shaded). No other cell in
this region can also contain a 4 (left), and no other
cells in this region can contain repeated numbers
of any value (right).
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Figure 2. Illegal diagonal neighbours in Ludoku.

This exact Sudoku variant has not been pro-
posed before to my knowledge. Nikoli, the pro-
prietary owner of Sudoku and world’s foremost
publisher of it and other Japanese logic puzzles,
confirm that this design has no precedent that
they know of.1

2 Design Process

The design process that led to Ludoku followed
the basic advice outlined in previous articles in
the Game Design Patterns series, as follows.

1Private communication with Nikoli’s chief editor Yoshinao Anpuku.
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2.1 Reinvent the Wheel

The article ‘Reinvent the Wheel’ [3] suggests start-
ing the design process with a known design that
has proven to be good and then look for ways
to modify it. This gives an entry point into the
design space that is known to be fruitful.

I chose Sudoku as my starting point for this
exercise, as Japanese-style logic puzzles [6] are
my favourite type of solitaire puzzle and Suduko
is the most widely known example of this genre.
Figure 3 shows an example.
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Figure 3. The ‘World’s Hardest Sudoku’ [2].

The fact that so many Sudoku variants al-
ready exist [5] suggests that this is a rich region of
the game design search space, while the danger
is that so many designers have already explored
this region that it could be exhausted. Is there
scope for yet another Sudoku variant with some-
thing new and meaningful to offer?

2.2 Explore the Design Space

Now that the starting point had been decided, I
applied the strategy outlined in the article ‘Ex-
plore the Design Space’ [4] and considered the
degrees of freedom that could be modified.

The Sudoku Dragon web site2 lists some of
the degrees of freedom that designers have modi-
fied over the years to create new Sudoku variants.
In almost all cases, Sudoku variants add complex-
ity to the rules (e.g. Diagonal Sudoku [5]), grid de-
sign (e.g. Killer Sudoku [6]) or both (e.g. Try [9]),
in order to introduce additional constraints and
solution strategies. However, I wanted to go in
the other direction and simplify the design.

I decided to explore variants on a plain 9×9
square grid with the usual 3×3 Sudoku sub-

regions removed, as shown in Figure 4. This
would simplify the design at least, and hark back
to the puzzle’s origins as a Latin square [8].

Figure 4. A plain 9×9 square grid.

2.3 Make the Design Do the Work

So what Sudoku-based rules would such a sim-
plified design support? According to the article
‘Make the Design do the Work’ [9], the rules of
a game should be as transparent and intuitive
as possible, and flow naturally from the design
of the equipment. Instead of giving the player
many rules to remember, as few rules as possible
should be defined and the design should enforce
the rest.

There is not much to work with in a 9×9
square grid apart from orthogonal and diagonal
adjacency. Sudoku makes good use of orthogo-
nal adjacency in its row and column rules (Rules
1 and 2 above), so can diagonal adjacent be ex-
ploited in a similar way? The simplest such rule
change, most in keeping with the existing rules,
would be:

3. No number is repeated along any diagonal
line.

However, it turns out that such fully diagonal
Sudoku packings can only occur on 5×5 and 7×7
square grids, as discussed in Appendix A. This
is probably one reason that Diagonal Sudoku [5]
only involves the two diagonal constraints across
the full board between opposite pairs of corners.
I therefore tried a reduced version of this rule:

3. The diagonal neighbours of a number do not
repeat that number.

2http://www.sudokudragon.com/sudokuvariants.htm
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This allows full packings on the 9×9 square
grid, exploits diagonal adjacency and is consis-
tent with the game’s other rules. Further, this
rule effectively replaces the local 3×3 sub-grids
in Sudoku with local 3×3 ‘X’-shaped regions, as
highlighted in Figure 2, thus maintaining concep-
tual consistency with the original game at a more
fundamental level. However, a problem with this
new rule soon became apparent.

2.4 Bug or Feature?

The article ‘Bug or Feature?’ [10] promotes aware-
ness of apparent bugs in designs that can be
turned around to produce useful features. The
problem with the rule listed immediately above
is that it allows opposite diagonal neighbours of
a cell to have the same number, such as the re-
peated value 5 in Figure 2 (right). This created
some cognitive dissonance, as such repeated di-
agonals just looked wrong, and felt in violation of
the spirit of the diagonal constraint. Each time it
occurred, I had to mentally go back over the rules
and confirm that it was indeed legal, disrupting
the flow of the game.

The solution was to simply forbid such cases,
as follows:

3. The diagonal neighbours of a number do not
repeat that number or each other.

This rule change removed the problem in a
consistent and elegant way without adding un-
due complexity, and introduced new strategies
(see Appendices B.2.2, B.2.3 and B.2.5). Turning
this bug into a feature was a clear improvement
and gave the final rule set shown in Section 1.1.

2.5 Embed the Rules

The article ‘Embed the Rules’ [11] describes the
benefits of having the design of a game’s equip-
ment implicitly enforce its rules as much as pos-
sible, in order to simplify the rule set and make
the design more poka-yoke (i.e. mistake-proof).
It could be argued that this new Sudoku vari-
ant violates this principle by instead simplifying
the equipment (by removing the sub-grids) and
adapting the rules to suit.

However, note that little complexity is added
to the game. The original Sudoku rule 3 (that no
number is repeated in any 3×3 sub-grid) is sim-
ply replaced by the new rule 3 (that the diagonal
neighbours of a number do not repeat that num-
ber or each other) and the original local Sudoku
constraints (3×3 sub-grids) are replaced by new
local constraints (3×3 ‘X’ regions). Further, given
that the new diagonal rule implicitly exploits an
additional property of the square grid – diagonal

adjacency – I would argue that the new design
embeds its rules in the equipment at least as much
as the original Sudoku design.

Now that the equipment and rules of the new
variant had been decided, the game required a
name. I chose ‘Ludoku’ as a contraction of ‘Local
Sudoku’, with the additional bonus that ludo is
the Latin root for ‘play’.

3 Analysis

This section provides a brief analysis of Ludoku
and how it differs from Sudoku.

3.1 Distinguishing Features

The most obvious difference between Ludoku
and Sudoku is the absence of the 3×3 sub-grids.
These are instead effectively replaced with the
implicit 3×3 ‘X’ regions due to the new diagonal
neighbourhood rule.

Figure 5 shows the three basic region types
in Ludoku: rows, columns and ‘X’ regions. It is
worth distinguishing between global regions (i.e.
rows and columns) that contain each of the num-
bers 1..9 when completed, and local regions (‘X’
regions) that will only contain five of the numbers
1..9 when completed.

Figure 5. Row, column and ‘X’ regions.

A key difference between Sudoku’s sub-grids
and Ludoku’s ‘X’ regions is that no number may
be repeated in a Sudoku sub-grid (Figure 6, left)
while such formations do not necessarily violate
the diagonal neighbourhood rule in Ludoku (Fig-
ure 6, right).
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Figure 6. A key difference between Sudoku and
Ludoku.

Ludoku’s ‘X’ regions provide weaker con-
straints for performing deductions than Sudoku’s
sub-grids, which has implications for the game’s
strategic depth. Note, however, that there are
only nine 3×3 sub-grids in a Sudoku grid while
there are 77 ‘X’ regions in a Ludoku grid, one cen-
tred on each cell minus the four corners (which
are subsets of the ‘X‘s at diagonally adjacent
cells). Sudoku has 9 + 9 + 9 = 27 constraint re-
gions in total to work with while Ludoku has
9 + 9 + 77 = 95. This far greater number of
weaker constraints outweighs any potential loss.

Another feature that highlights the fundamen-
tal difference between these two games is that no
Sudoku challenge can start with fewer than 17
hints and still remain uniquely deducible,3 while
there exist deducible 15-hint Ludoku challenges,
as shown in Figure 7. There may exist deducible
Ludoku challenges with even fewer hints; a com-
plete search/analysis has not been done.
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Figure 7. A deducible 15-hint Ludoku challenge.

3.2 Strategic Depth and Deducibility

Ludoku allows most of the basic Sudoku strate-
gies to be applied (except for those specific to the

3×3 sub-grids) plus the addition of several new
strategies. Some of these are listed in Appendix
sections B.1 and B.2, respectively. In terms of
number of strategies, Ludoku could well be strate-
gically deeper than Sudoku.

Importantly, Ludoku balances global con-
straints provided by the row and column regions
and the local constraints provided by the ‘X’ re-
gions. Such interaction between global and local
constraints appears to be central to the success of
many logic puzzles.

A logic puzzle is described as deducible if it
can be solved by applying logical deductive steps
to produce a unique solution [13]. Ludoku suc-
ceeds in allowing deducible challenges that are
interesting to solve, much like Sudoku, using the
strategies listed in Appendix B.

The greater number of regions – 95 as op-
posed to 27 – makes Ludoku harder than Sudoku
in general, as players must remain vigilant over
a greater number of potential deduction points
throughout the game. This greater mental effort
is reduced to a manageable level through the ju-
dicious use of relevant strategies that encapsulate
the side-effects of the new constraints, but there
is no denying that Ludoku is hard; the more diffi-
cult examples can take an hour or two to solve.

Even the annotated 7×7 sample game listed
in Appendix C requires knowledge of the rele-
vant strategies and significant forward planning.
For example, consider the sequence of deductive
steps leading to the instantiation of the value 2 in
Figure 36. This sequence relies on several differ-
ent regions, both local and global, and apparently
unrelated candidate values 4, 1 and 3 before the
eventual 2 is instantiated.

This increased difficulty in Ludoku is both a
blessing and a curse. Sudoku enthusiasts looking
for new challenges with novel strategies that will
push their skills might enjoy Ludoku, but it is un-
likely that the average player looking for a mild
diversion will persist with it.

3.3 Challenge Design

It is preferable to design Ludoku challenges with
their starting hints in symmetrical patterns. Su-
doku publisher Nikoli have long maintained that
handcrafted challenges are superior to those gen-
erated algorithmically [14], and symmetric hint
placement is an indicator of handcrafted design.
Even when challenges are generated by computer,
incorporating symmetry can help give the impres-
sion of handcrafted design [15]. Symmetric hint
placement is especially important in Ludoku, as
the absence of 3×3 sub-grids makes the starting
hints the only way to give challenges structure.

3Proven by McQuire et al. [12] in a 7.1 million hour search performed over one year on a supercomputer cluster.
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33 22 44 44 44 44 22 33

22 33 55 66 55 33 22

44 55 77 88 77 55 44

44 77 99 99 77 44

66 88 1212 88 66

44 77 99 99 77 44

44 55 77 88 77 55 44

22 33 55 66 55 33 22

33 22 44 44 44 44 22 33

Figure 8. Cell totals for the ‘diamond’ design.
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44 55 66 44 66 55 44
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Figure 9. Cell totals for the ‘asymptotes’ design.
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Figure 10. Cell totals for the ‘circle’ design.

Figures 8, 9 and 10 show some templates for
generating Ludoku challenges with symmetric
hint patterns. Black cells indicate positions of
starting hints, and the number in each empty cell
shows the total number of starting hints that the
cell shares a constraint region with, indicating
the amount of deductive information available to
each cell. If a cell shares constraint regions with
eight or more starting hints, then its value can be
immediately instantiated if those starting hints
contain eight different numbers. Higher values
indicate greater constraint, and in logic puzzles it
is usually beneficial to focus on the point of most
constraint at each step.

The different distributions of cell totals give
each pattern a different character. For example,
the ‘diamond’ design shown in Figure 8 has a
high-value cell at its centre with 12 shared start-
ing hints that is likely to be deduced, but the avail-
able information dissipates quickly the farther a
cell is from the centre. Solving challenges based
on this pattern would typically involve focussing
on the centre then solving outwards. The ‘asymp-
totes’ design shown in Figure 9, conversely, has
a low-value centre cell surrounded by four high-
value neighbours that would be the sensible start-
ing points for solution.

The ‘circle’ design shown in Figure 10 is more
rounded, so to speak, with a reasonably homoge-
nous distribution of cell totals over most of its
area, apart from the outermost cells. This is the
most pleasing design found so far, both aestheti-
cally and in terms of deductive flow during solu-
tion of the challenges that it produces.

4 Generation

The Ludoku challenges shown in this paper, and
printed throughout this issue, were generated al-
gorithmically using the following approach:

1. Generate a random packing of numbers
that satisfies the Ludoku region con-
straints.

2. Choose a starting hint set as follows (with
equal probability):

(a) A pre-defined pattern (Figure 1).

(b) Iteratively removing hints in a sym-
metric pattern (Figure 24).

(c) Iteratively removing single hints (Fig-
ure 7).

3. If the final hint pattern provides a de-
ducible challenge, then:

(a) Evaluate the challenge.

(b) Store the challenge to file.
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In steps 2(a) and 2(b), hint patterns were itera-
tively reduced as long as the challenge remained
deducible using the strategies listed in Appendix
B. This process generates around one deducible
challenge per second per thread on a typical lap-
top computer.

Challenges were evaluated for quality by
recording the sequence of strategies applied and
applying the following calculation:

quality = variety + degree− help (1)

where variety is the number of times the player
must apply a different strategy to progress in the
solution (to encourage interplay between strate-
gies), degree is the minimum number of times any
one strategy is applied (to encourage the use of
all strategies), and help is based on the number of
starting hints (to reward fewer hints).

This quality estimate gives some indication
of the strategic depth and difficulty of challenges,
but does not always capture how truly difficult a
challenge is for the human player. This measure-
ment was used to indicate potentially interesting
challenges, with high-scoring examples then be-
ing hand-tested for more accurate evaluation.

Note that the automated solution process was
based entirely on the strategies listed in Appendix
B and not the more thorough deductive search tech-
nique devised to solve and evaluate player diffi-
culty for general deduction problems [13]. This
is because the strategies implemented already en-
coded the key deductive steps that players could
be expected to make for this game, and the chal-
lenges thus generated already proved difficult
enough without considering higher levels of de-
ductive embedding. ‘Easy’ 9×9 challenges can
still take 20-30 minutes while ‘hard’ challenges
can take up to 1-2 hours to manually solve.

5 Conclusion

Previously described Game Design Patterns were
successfully applied to create the Ludoku deduc-
tion puzzle, an apparently novel Sudoku variant
that simplifies the board design and introduces
new strategies without adding undue rule com-
plexity. Ludoku could be strategically deeper
than Sudoku but its distribution of local con-
straints over the entire grid (rather than concen-
trated in just nine sub-grids) makes it harder
work for players and more difficult to solve.

On the positive side, I find Ludoku to be an
interesting puzzle that is absorbing and enjoyable
– if challenging! – to solve. On the negative side,
it will probably be too challenging for most play-
ers, and is in the end just another Sudoku variant.
However, I am generally satisfied with the result
of this game design experiment.

Acknowledgements

This work was conducted while the author was a
member of the RIKEN Institute’s Advanced Intel-
ligence Project (AIP).

References

[1] The Times Japanese Logic Puzzles: Hitori,
Hashi, Slitherlink and Mosaic, London, Harper
Collins, 2006.

[2] Collins, N., ‘World’s Hardest Sudoku: Can
You Crack It?’, The Telegraph: Science, 28 June
2012.

[3] Browne, C., ‘Reinvent the Wheel’, Game &
Puzzle Design, vol. 3, no. 1, 2017, pp. 51–62.

[4] Browne, C., ‘Explore the Design Space’,
Game & Puzzle Design, vol. 1, no. 2, 2015,
pp. 71–83.

[5] ‘Sudoku Rules’, Conceptis Puzzles, 2018.
http://www.conceptispuzzles.com/
index.aspx?uri=puzzle/sudoku/rules

[6] Lewis, L., ‘Too Good for Fiendish? Then Try
Killer Su Doku’, The Times, 31 August 2005.

[7] Browne, C., ‘Try: A Hybrid Puzzle/Game’,
Game & Puzzle Design, vol. 1, no. 2, 2015,
pp. 21–27.

[8] Rosenhouse, J. and Taalman, L., Taking Su-
doku Seriously: The Math Behind the World’s
Most Popular Pencil Puzzle, Oxford, Oxford
University Press, 2011.

[9] Browne, C., ‘Make the Design Do the Work’,
Game & Puzzle Design, vol. 2, no. 2, 2016,
pp. 27–40.

[10] Browne, C., ‘Bug or Feature?’, Game & Puzzle
Design, vol. 2, no. 1, 2016, pp. 61–69.

[11] Browne, C., ‘Embed the Rules’, Game & Puz-
zle Design, vol. 1, no. 1, 2015, pp. 60–70.

[12] McGuire, G., Tugemanny, B. and Civario, G.,
‘There is No 16-Clue Sudoku: Solving the Su-
doku Minimum Number of Clues Problem
via Hitting Set Enumeration’, arXiv, 2013.
http://arxiv.org/pdf/1201.0749.pdf

[13] Browne, C., ‘Deductive Search for Logic Puz-
zles’, in Proceedings of Computational Intelli-
gence & Games (CIG ’13), Niagara Falls, IEEE,
2013, pp. 1–8.

[14] Kanamoto, N., ‘A Well-Made Sudoku
is a Pleasure to Solve’, Nikoli, 2001.
http://www.nikoli.co.jp/en/puzzles/
why hand made.html

[15] Browne, C., ‘Metrics for Better Puzzles’, in
El-Nasr, M. S., Drachen, A., Canossa, A. and
Isbister, K. (eds.), Game Analytics: Maximiz-
ing the Value of Player Data, Berlin, Springer,
2013, pp. 769–800.



C. Browne Ludoku: A Game Design Experiment 41

Cameron Browne is a Research Scientist at
the RIKEN Institute’s Advanced Intelligence
Project (AIP) in Tokyo. His research interests
include artificial intelligence and automated
game design. Address: Mitsui Building, 15th

floor, 1-4-1 Nihonbashi, Tokyo 103-0027, Japan.
Email: cameron.browne@riken.jp

Appendix A. There is No Fully
Diagonal 9×9 Sudoku
The question raised in Section 2.3 is whether an
n×n square grid can be filled with numbers 1..n
such that no number is repeated in any row, col-
umn or along any diagonal line within the grid.
Let us call such a packing a fully diagonal Sudoku
packing. Two n×n square grids that allow such
packings are sizes n = 5 and n = 7.
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5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

1 2 3 4 5
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Figure 11. Fully diagonal 5×5 Sudoku packings.

Figure 11 shows the two possible unique fully
diagonal Sudoku packings on the 5×5 square grid
(other packings may be derived by permutations
of the number sets 1..5). These correspond to
cyclic packings in which the offset distance d for
each row r and column c is given by:

d = (2r + c) % n (2)
d = (3r + c) % n (3)

Figure 12 shows the four possible unique fully
diagonal Sudoku packings on the 7×7 square grid
(other packings may be derived by permutations
of the number sets 1..7). These correspond to
cyclic packings in which the offset distance d for
each row r and column c is given by:

d = (2r + c) % n (4)
d = (3r + c) % n (5)
d = (4r + c) % n (6)
d = (5r + c) % n (7)

This problem is identical to the n2-Queen
Colouring Problem, for which it has been shown
that it is not possible to superimpose nine differ-
ent solutions to the n-Queens Problem on a 9×9
grid.4 Hence, it would not be possible to derive
any fully diagonal 9×9 Sukoku challenges using
the initial rule set outlined in Section 2.3.
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Figure 12. Fully diagonal 7×7 Sudoku packings.

Appendix B. Solution Strategies
This appendix describes some key strategies for
solving Ludoku challenges. A general rule of
thumb for tackling logic problems can also save
time: focus on the most constrained point at each step.

B.1 Regular Sudoku Strategies

The following basic Sudoku strategies also apply
to Ludoku.

B.1.1 Eliminate by Region

When the value of a cell is known, then that value
can be eliminated as a candidate from all other
cells with which it shares a region. For example,
the value 3 shown in Figure 13 can be eliminated
from the other cells shown.

3

Figure 13. Remove candidate 3s from other cells.

4Vašek Chvátal, ‘Colouring the Queen Graphs’: http://users.encs.concordia.ca/ chvatal/queengraphs.html
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B.1.2 Instantiate by Cell
If the number of candidate values for a given cell
has been reduced to a single possibility, then that
value can be instantiated at that cell. For example,
Figure 14 shows a cell that must be 9.

8

7

3 4 5 6

2

1

1 2 3
4 5 6
7 8 9

Figure 14. The centre cell must be 9.

B.1.3 Instantiate by Region

If a given value can only occur in one possible
cell within a global region, i.e. row or column,
then that value can be instantiated at that cell. For
example, Figure 15 shows a case in which the cell
marked ‘?’ within the row must take the value 4.

4

4

4

?

Figure 15. The cell marked ‘?’ must be 4.

B.1.4 Pairs of Pairs by Region
If the candidate sets for two cells within a region
are reduced to the same two candidate values,
then those values can be removed as candidates
from all other cells within that region. For ex-
ample, the row shown in Figure 16 has two cells
reduced to candidates 4 and 5, hence these values
can be eliminated from other cells in the region.

4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5

Figure 16. 4 and 5 can be eliminated as shown.

B.1.7 Cross-Elimination

If two candidate values can only occur at the same
two positions in any two rows or columns, then
that value can be eliminated from those positions
in any other columns or rows.

For example, consider Figure 17, which
shows the coverage of known 4s in this exam-
ple. It may not seem that any other 4s can be
immediately instantiated from here.

4

2

4

4

4

Figure 17. Coverage of known 4s.

However, 4s only occur on the same two rows
(three and seven) of the two columns highlighted
in Figure 18. The value 4 can therefore be elim-
inated from other cells along these two rows as
shown, allowing another 4 to be instantiated.

4

2

4

4

4

4

4 4 4

4 4 4

Figure 18. 4s can be eliminated from two rows.
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B.2 Ludoku-Specific Strategies

The following strategies, particular to Ludoku,
are based on local diagonal relationships between
cells. The rationale behind these is to eliminate
candidate placements that that would incorrectly
eliminate neighbouring values from their respec-
tive row or column due to local diagonals.

B.2.1 1-Step Pairs

If a given value can only occur in two adjacent
cells within a given row or column, then that
value can be eliminated from diagonally adjacent
cells, as shown in Figure 19.

5

5

Figure 19. 5s can be eliminated.

B.2.2 2-Step Pairs

If a given value can only occur in two cells sepa-
rated by one intervening cell within a given row
or column, then that value can be eliminated from
diagonally adjacent cells up to two steps away, as
shown in Figure 20.

5

5

Figure 20. 5s can be eliminated.

B.2.3 4-Step Pairs

If a given value can only occur in two cells sep-
arated by three intervening cells within a given
row or column, then that value can be eliminated
from diagonally adjacent cells exactly two steps
away, as shown in Figure 21.

5

5

Figure 21. 5s can be eliminated.

B.2.4 1-Step Triplets

If a given value can only occur in three consec-
utive cells within a given row or column, then
that value can be eliminated from the common
diagonally adjacent cells, as shown in Figure 22.

5

5

5

Figure 22. 5s can be eliminated.

B.2.5 2-Step Triplets

If a given value can only occur in three cells
within a given row or column, each separated by
an intervening cell, then that value can be elimi-
nated from diagonally adjacent cells exactly two
steps away, as shown in Figure 23.

5

5

5

Figure 23. 5s can be eliminated.
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Appendix C. Worked Example

This appendix provides a worked example of a
7×7 Ludoku challenge (Figure 24) that shows
most of the deductive strategies listed in Ap-
pendix B in action. Note that even though this
challenge is smaller than the standard size, it is
still quite difficult. Also note the constant inter-
play between local and global constraints in al-
lowing deductions.

7 5

7

1

6

2

5 4

Figure 24. Example 7×7 Ludoku challenge.

A 7 can immediately be instantiated by region,
along the third row (Figure 25). Note that rows
are numbered from bottom to top.

7 5

7

1

6

2

5 4

7

Figure 25. 7 can be instantiated.

A 6 can then be instantiated along the seventh
column (Figure 26).

7 5

7

1

6

2

5 4

7

6

Figure 26. 6 can be instantiated.

The coverage of known 7s means that 7 can only
occur in a 2-step pair along the fourth row (Fig-
ure 27). . .

7 5

7

1

6

2

5 4

7

6

7 7

Figure 27. A 2-step pair of 7s.

. . . allowing two potential 7s to be eliminated
from the sixth row and a further 7 to be instanti-
ated (Figure 28).

7 5

7

1

6

2

5 4

7

6

7

7 7

7 7

Figure 28. 2-step pair elimination to give a 7.
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This new 7 eliminates one of the 2-step pair to
allow another 7 to be instantiated (Figure 29). . .

7 5

7

1

6

2

5 4

7

6

7

7 7

Figure 29. Another 7 can be instantiated.

. . . which in turn allows a 7 to be instantiated on
the fifth row (Figure 30). The final 7 can then be
trivially instantiated on the seventh row.

7 5

7

1

6

2

5 4

7

6

7

7

7

7

Figure 30. Another 7 can be instantiated.

Only two 5s can exist in the sixth column in a
1-step pair, allowing the elimination of candidate
5s from neighbouring cells (Figure 31).

7 5

7

1

6

2

5 4

7

6

7

7

7

7

5

5

5

5

Figure 31. A 2-step pair of 5s.

This produces another 1-step pair of 5, in the fifth
column, which eliminates another neighbouring
candidate 5 (Figure 32).

7 5

7

1

6

2

5 4

7

6

7

7

7

7

5

5

5

5

5

5 5

Figure 32. Another 2-step pair of 5s.

This allows a 5 to be instantiated on the six row
(Figure 33).

7 5

7

1

6

2

5 4

7

6

7

7

7

7

5

5

5

5

5

5

5

Figure 33. 5 can be instantiated..

A similar process can be applied to deduce the
positions of the remaining 5s (Figure 34).

7 5

7

1

6

2

5 4

7

6

7

7
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5

7

5

5

5

5

Figure 34. Positions of remaining 5s.
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Candidate 4s can then be reduced to a 2-step pair
in the fifth row, which reduces candidate 4s to a
1-step pair in the third row, which eliminates a
neighbouring candidate 4 above (Figure 35).

7 5

7

1

6

2

5 4

7

6

7

7

7

5

5

5

5

5

7

4 4 4 4

4

4 4

Figure 35. 2-step pairs of 4s.

The two cells circled in Figure 36 can then be re-
duced to candidates 1 and 3, and the cell thus
triangulated must take the value 2.

7 5

7

1

6

2

5 4

7

6

7

7

7

5

5

5

5

5

7

2

4 4 4 4

1 3
4

4 4
1 3

Figure 36. Instantiation due to pairs of pairs.

This leads to the immediate instantiation of a
nearby 2 (Figure 38). . .

7 5

7

1

6

2

5 4

7

6

7

7

7

5

5

5

5

5

7

2

2

Figure 37. Trivial instantiation of a 2.

. . . and the deduction of another 2, through an
elimination due to a 1-step pair (Figure 38).
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7
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2
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2

22

Figure 38. More involved deduction of a 2.

And so on, until the final solution (Figure 39).

7 2 1 6 3 4 5

3 4 5 2 7 1 6

2 1 6 3 4 5 7

6 7 4 5 1 3 2

4 5 3 7 2 6 1

1 6 2 4 5 7 3

5 3 7 1 6 2 4

7 5

7

1

6

2

5 4

7

6

7

7

7 2

5

5

5

5

5

7

2

2

Figure 39. Final solution.


