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Limping Boards for Games

Cameron Browne, Queensland University of Technology (QUT)

This paper describes how the simple mathematical notion of the limping triangle may be extended
to a broader class of limping polygons, and the implications this has for the design of game boards.
Limping rectangular boards (with a square basis) and limping hexagonal boards (with a regular
hexagonal basis) are shown to give the designer control over some useful game design parameters.

1 Introduction

A limping triangle is a right triangle in which
the two short sides (i.e. not the hypotenuse)

differ in length by exactly one unit [1, p. 116]. Fig-
ure 1 shows a limping triangle with short sides of
length n and n+1.
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Figure 1. A limping triangle.

This paper describes how this concept can
be extended to describe certain subsets of game
boards. While the limping property does not
confer any particularly interesting mathematical
properties to the triangle, its use in the context of
board shape can give certain mathematical guar-
antees that are useful for game design.

2 Limping Polygons

Firstly, we extend the concept of the limping trian-
gle to limping polygons, for which a similar n:n+1
property holds. Figure 2 (left) shows the 3:4:5
triangle which is both a Pythagorean triangle and
a limping triangle.
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Figure 2. 3:4:5 triangle and 3:4 limping rectangle.

Placing two copies of this triangle together
forms the rectangle with sides {3, 4, 3, 4} (right).
We denote this as a 3:4 limping rectangle, as its
sides alternate between 3 and 4 units in length,
and shall adopt the notation n:n+1 to describe
such polygons.

2.1 Concavity and Convexity

The examples shown so far – triangle and rectan-
gle – are convex polygons, as each turn is in the
same direction. However, it is also possible to
have concave limping polygons.

Figure 3 (left) shows a concave limping poly-
gon with sides of length {1, 2, 1, 2, 1, 2, 1, 2}, in
which turns alternate left and right with each seg-
ment. The polygon shown in Figure 3 (right) with
sides of length {1, 2, 3, 2, 1, 2, 3, 2} is not a limping
polygon in the true sense, as each pair of adjacent
sides satisfies the n:n+1 property but the overall
figure includes sides of length n+2. The segment
lengths of true limping polygons must alternate
only between n and n+1.
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Figure 3. A concave limping polygon (left) and a
locally but not globally limping polygon (right).

2.2 Right and Non-Right Polygons

If every turn in a limping polygon is a right an-
gle, then the figure will cover an area that is an
even number of square units. This can be seen by
observing that side lengths along one axis must
all be even while side lengths along the other axis
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must all be odd. Any cross-section along the even
axis must pass through an even number of units,
and any sum of even numbers will be even, hence
the total area of any right-angled limping poly-
gon must be an even number of square units. This
can be seen in Figure 4.

Figure 4. Right limping figures have even area.

Figure 5 shows the first four shapes in the
series of minimal (1:2) convex limping polygons,
which all have an even number of sides, but in
which only the first (rectangular) case has a right-
angled basis. Limping polygons must have an
even number of sides in order to satisfy the n:n+1
constraint. Hence limping triangles – which in-
spired the idea – are ironically excluded from the
broader umbrella of limping polygons.
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Figure 5. Minimal (1:2) convex limping polygons.

3 Limping Boards

In terms of board design, we are most interested
in convex polygons, as they are the most efficient
and widely used board shape. More specifically,
we are most interested in the first two convex
cases shown in Figure 5 – rectangular and irregu-
lar hexagonal – as these are the two fundamental
shapes that align naturally with the cells of regu-
lar square and hexagonal tilings (Figure 6).

Figure 6. Square and hexagonal bases.

3.1 Square Basis

Limping boards with a square basis are simply
n×(n+1) rectangles. For example, Figure 7 shows
a 7:8 limping rectangular board.

Figure 7. A 7:8 limping rectangular board.

For limping rectangular boards, the number
of edge cells Cer will always be even and is given
by:

Cer = 2(2n− 1) (1)

The total number of cells Ctr will also always
be even and is given by:

Ctr = n(n + 1) (2)

Limping rectangular boards are reason-
ably common, and the BoardGameGeek forum
‘Games played on an N x N+1 grid’ lists dozens of
examples.1 Note that the terminology n×(n+1)
implies a rectangular shape, whereas the new
n:n+1 terminology suggested for limping poly-
gons applies to a wider range of shapes.

3.2 Hexagonal Basis

Limping hexagonal boards, with alternating sides
of n and n+1 hexagonal cells, are more interest-
ing for a number of reasons. Figure 8 shows the
three smallest limping hexagonal boards, of size
1:2, 2:3 and 3:4. The figures are coloured to show
how each can be decomposed into three rhombi
of size n2.

Figure 8. Limping hexagonal boards: 1:2, 2:3, 3:4.

1https://boardgamegeek.com/geeklist/23237/games-played-n-n1-grid/
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For limping hexagonal boards, the number of
edge cells Ceh will always be odd and is given by:

Ceh = 3(2n− 1) (3)

The total number of cells Cth will have the
same parity (i.e. even or odd) as its base size n,
and is given by:

Cth = 3n2 (4)

This guaranteed divisibility by three, in both
the number of edge cells and total number of cells,
makes limping hexagonal boards a promising op-
tion for three-player games. It may also have
benefits for publishers, if boards can be disassem-
bled into three equal pieces for storage in a game
box.

Further, limping hexagonal boards do not
have a single central cell, as is the case with the
more standard hexhex board (i.e. a regular hexagon
tessellated by hexagons), but are centred on the
intersection of three equally central cells. This is
already an interesting design feature which can
reduce any inherent first move advantage.2

Figure 9 shows the limping rhombus board,
which is an unusual hybrid. This board has a
hexagonal basis but its shape has more in com-
mon with an n×(n+1) rectangle, giving an even
number of edge cells and an even number of total
cells. I know of one only game – n×(n+1) Hex,
discussed below – which uses this board shape.

Figure 9. A 5:6 limping rhombus board.

3.3 Cell Parity

The parity of the number of board cells can be
an important consideration for some games. For
two-player games, it is often desirable to have an
even number of cells so that both players have
at least the possibility of making an equal num-
ber of moves (e.g. Clobber, below). At the same
time, an odd number of edge cells can be useful
to resolve ties (e.g. Star, below).

Table 1 shows a comparison of edge cell (Pe)
and total cell (Pt) parities for the various board
shapes and bases discussed above.

Regular Limping
Square Hex. Rect. Hex. Rhomb.

Pe Even Even Even Odd Even
Pt As n Odd Even As n Even

Table 1. Cell parity of various board types (n > 1).

It can be seen that the limping hexagonal
board is the only combination that guarantees
an even number of total cells (for even sizes of n)
but an odd number of edge cells. This, combined
with the guaranteed divisibility by 3 and lack of
a single central cell, make the limping hexagonal
board a perhaps underused resource.

4 Examples

The following examples show instances of games
that use limping boards as a basic design feature.

4.1 Clobber

Clobber3 is a two-player combinatorial game, in
which players take turns moving one of their
pieces to capture (i.e. clobber) an adjacent enemy
piece. The last player to move wins. Figure 10
shows the starting position for a 5:6 game.

Figure 10. A 5:6 game of Clobber about to start.

Clobber is often played on a 5:6 or other
n:n+1 limping rectangular board. This guaran-
tees an even number of board cells regardless of
n, hence theoretically offers each player an equal
number of moves; an important consideration in
combinatorial games.

2This is one reason why the 14×14 Hex board is often preferred over Piet Hein’s original 11×11 board [2].
3https://boardgamegeek.com/boardgame/23864/clobber
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4.2 Silverman’s Minichess

Figure 11 (left) shows the 4×4 game of Minichess
invented by mathematician David Silverman.4

Figure 11. Silverman’s 4×4 and 4×5 Minichess.

When a trivial win for White was pointed out,
Silverman added an opening rule – Black nom-
inates which pawn White must play first – but
this was found to lead to a trivial win for Black.
Finally, Silverman solved the trivial win problem
by extending the board to a 4:5 limping rectangle
with a row of empty cells separating the players’
forces, as shown in Figure 11 (right).

This demonstrates a common application of
the limping rectangle, as a way of sizing boards
between the more standard square sizes. The
following considerations often result in limping
rectangular boards, although the fact that they are
limping is somewhat coincidental in these cases:

• Does the game need a different number of
pieces? Add or remove a row/column of
pieces.

• Do the opposing forces need more separa-
tion? Add a row/column of empty cells.

• Do the opposing forces need to engage
more quickly? Remove a row/column of
empty cells.

4.3 Bridg-It

The game of Bridg-It, by mathematician David
Gale [3], is shown in Figure 12. Players take turns
placing a bridge of their colour between available
pegs of their colour, in an effort to connect their
sides of the board.

The board consists of two orthogonally over-
lapping 5:6 limping rectangular grids of pegs.
The overall board is ostensibly a sparse 11×11
grid of pegs, but each player’s moves are con-
strained to their own 5:6 limping rectangle. Limp-
ing rectangles provide the most square non-
square rectangular shape, allowing this neat form
of overlap.

Figure 12. A game of Bridg-It won by Black.

The layout of pegs on the Bridg-It board can
also be seen in the starting position of connection
game Ayu5 (Figure 13) as a way to initially sepa-
rate all pieces, and in the squares of the semireg-
ular truncated square tiling 4.8.8 (Figure 14), al-
though these occurrences are coincidental.

Figure 13. Ayu starting position.

Figure 14. Truncated square tiling 4.8.8.

4 https://en.wikipedia.org/wiki/Minichess
5https://boardgamegeek.com/boardgame/114484/ayu
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4.4 Star

Turning now to games on limping hexagonal
boards, the game of Star demonstrates their de-
sign benefits clearly. Star was designed in 1983
by mathematician Craige Schensted (now known
as Ea Ea) [4]. Figure 15 shows a completed 4:5
game won by Black.

Figure 15. A 4:5 game of Star won by Black.

In Star, two players add a piece of their colour
each turn, and win by achieving the highest score
at the end of the game. A star is a connected chain
of same-coloured pieces that contains edge pieces
adjacent to at least three external dots (see Fig-
ure 15). Each star’s score is the number of external
dots that its edge pieces are adjacent to minus 2.
Each player’s score is the total score of their stars.

While the scoring system may initially sound
confusing, it is extremely intuitive in play, and
the game basically boils down to connecting as
many edge cells of your colour into as few groups
as possible, to maximise the external neighbour
count while minimising the -2 group penalty.

Black has won the game shown with star
scores of 11 + 2 = 13 points, compared to White’s
3 + 1 + 4 + 4 = 12 points. Black wins despite only
having nine pieces on edge (scoring) cells while
White has twelve pieces on edge cells; Black’s
stronger connection reduces the number of black
groups and makes the difference.

Star boards with even n (e.g. size 4:5) will
have an even number of cells, giving both players
the potential for the same number of moves as
there is no capture. While games tend to end as
soon as it is no longer possible for either player
to score any more points, as is the case with the
game shown in Figure 15, parity can become crit-
ical if the board fills up and the last move proves
decisive. Giving the opening player both the first
move and the last move would be too strong an

advantage. Further, the odd number of edge cells
means an odd number of total points on offer,
hence no game of Star can ever end in a tie once
all edge cells are filled.

4.5 Projex

Figure 16 shows the game of Projex, invented by
mathematicians Lloyd Shapley and Bill Taylor in
1994.6 The board ‘wraps around’ at the edges as
shown to form a projective plane, e.g. edge cell a
is considered adjacent to edge cells l and k, etc.
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Figure 16. A 4:5 Projex board and a win for White.

Players win at Projex by making a chain of
their pieces that forms a non-trivial loop encir-
cling the projective plane. Explaining exactly
what this means is beyond the scope of this pa-
per, suffice it to say that players win by forming
a chain of their pieces with an odd number of
edge crossings, such as the white chain shown in
Figure 16 which has a single edge crossing.

Again, even board sizes n give an even num-
ber of board cells, guaranteeing an equal number
of moves for both players if the board fills up.
However, the more fundamental reason that Pro-
jex is played on a limping hexagonal board is due
to the geometry of projective edge connections, as
edges of length n nestle into neighbouring edges
of length n+1 on the hexagonal grid, and vice
versa. To illustrate this point, Figure 17 shows
three adjacent limping hexagonal boards packed
around a common intersection. Note that the
boards are centred relative to each other.

Figure 18 shows three hexhex boards packed
together in a similar way. Notice in this case,
however, that this packing is oriented and can
progress either clockwise (left) or anticlockwise
(right) around the intersection, which would

6https://boardgamegeek.com/boardgame/31805/projex
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make wraparound projective adjacency ambigu-
ous. The centred packing allowed by limping
hexagonal boards avoids this ambiguity.

Figure 17. Limping hexagons nestle nicely.

Figure 18. Hexhex board packings are oriented.

4.6 Shoulder to Shoulder

Figure 19 shows the starting position for Shoulder
to Shoulder, a game for three players designed by
David Parlett in 1975.7 The game was originally
designed on a size 7 hexhex board with 127 cells,
but it was found that the central cell gave the
player who occupied it a huge advantage. A play-
tester then suggested reducing the board to that
shown – a 6:7 limping hexagonal board – which
provided the following benefits:

• No more single central cell.

• Number of edge cells Ceh divisible by 3.

• Total number of cells Cth divisible by 3.

• Number of cells reduced from 127 to 108.

These properties combined harmoniously to
benefit the game. The limping board design al-
lowed an intuitive starting arrangement for each
player’s twelve pieces as shown, and solved other
problems that had been plaguing the game.

Figure 19. Shoulder to Shoulder starting position.

4.7 Tres

The game of Tres, designed by Fred Horn in 2011
and shown in Figure 20, involves a grid of pegs in
a 4:5 limping hexagon.8 Players slot a three-holed
triangle of their colour over three pegs each turn,
and aim to surround the greatest number of pins
with pieces of their colour. Pieces may stack up
to three triangles high.

Figure 20. The Tres board.

Horn explains that the Tres design was origi-
nally a size-5 hexhex layout, but was reduced to
a 4:5 limping hexagon in order to make games

7http://www.parlettgames.uk/gamepie/shoulder.html
8Personal correspondence from Horn including unpublished Tres specification and rule sheet.
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a bit shorter and reduce the amount of material
required. An added benefit of the limping shape
is that it reduces the board from 6-fold to 3-fold
rotational symmetry, which Horn points out pro-
vides greater scope for strategy and allows more
strategic play earlier in games.

4.8 Zertz

Figure 21 shows the starting layout for Zertz, a
GIPF game designed by Kris Burm in 1999 [5].
The 37 black discs show the layout for the stan-
dard game, while dotted positions are for addi-
tional pieces that can be added for longer games.

Figure 21. Starting layout for Zertz.

If all 48 discs are used in the extended game,
then the starting layout forms a 4:5 limping
hexagon. This is another case of extending a stan-
dard board in one direction to coincidentally pro-
duce a limping board, as per Minichess.

4.9 n×(n + 1) Hex

The game of Hex is typically played on an n×n
rhombus of hexagons [2]. However, Martin Gard-
ner describes an interesting variant played on an
n×(n+1) rhombus of hexagons [6], shown in Fig-
ure 22, with the first player aiming to connect the
two sides farthest apart and the second player
aiming to connect the two sides closest together.
This is the only game played on an n:n+1 limping
rhombus that I am aware of.

The interesting thing about this version of
Hex is that it provides a guaranteed win for the
second player, due to a point-pairing symmetry
strategy. Each time the opponent plays, then play-
ing in the matching cell with the same letter en-
sures that the closest board sides are connected
before the farthest sides.

The partition of the n:n+1 limping rhom-
bus into two mirrored triangles, shown in Fig-

ure 22, recalls the doubling of limping triangles
discussed in Section 2 that started this discussion.
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Figure 22. Winning strategy for n×(n+1) Hex.

This raises the intriguing possibility of simi-
lar point-tripling strategies for some three-player
games on hexagonal limping boards, e.g. based
on the partitions shown in Figure 8. But such
strategies would have to take into account inter-
vening moves by both opponents so are unlikely.

5 Key Properties for Design

Some key properties in terms of game design, for
the three types of limping board discussed above,
are as follows:

1. Limping Rectangular Boards:
• Even number of edge cells.
• Even number of total cells.
• 2-fold symmetry (rather than 4-fold).
• Extend a row to separate forces.
• Remove a row to encourage conflict.

2. Limping Hexagonal Boards:
• Odd number of edge cells.
• Odd or even number of total cells (as per n).
• Number of edge cells divisible by 3.
• Number of total cells divisible by 3.
• No single central cell.
• Projective edge crossings are centred.
• 3-fold symmetry (rather than 6-fold).

3. Limping Rhombus Boards:
• Even number of edge cells.
• Even number of total cells.
• Subject to symmetry strategies.

In all cases, the limping property guaran-
tees that certain board sides will be longer or
shorter than others, and closer or further from
the opposite board sides than others. This asym-
metry could be exploited to handicap games as
needed. For example, in a connection game, the
weaker player – or second player if there is a first
move advantage – could aim to connect the longer
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board edges which are closer together, while their
opponent could aim to connect the shorter board
edges which are further apart. The combination
of more cells closer together gives the weaker
player a double advantage to balance things.

6 Conclusion
The extension of the mathematical idea behind
limping triangles to limping polygons defines a
class of shapes with some useful properties rele-
vant to the design of game boards. Limping rect-
angular boards (with a square basis) provide use-
ful board sizes in between standard square sizes,
and guarantee an even number of board cells
regardless of size. Limping hexagonal boards
(with a regular hexagonal basis) guarantee an
even number of cells when n is even, and an odd
number of edge cells regardless of size. They also
pack with projected neighbours to provide unam-
biguous wraparound adjacencies on the hexago-
nal grid. Other useful properties are listed above.

When developing games, it is worth keeping
in mind the properties of the various board types
summarised in Table 1. These constraints provide
mathematical guarantees that can be exploited to
elegantly solve certain game design problems. It
is no coincidence that most of the designers men-
tioned above, who have used limping boards in
their games, are mathematicians.
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Gadeiro Challenge #4
Pack the pieces on the right to fill the shape on the left. Gadeiro is described on pages 39–41.


