
68 Maths in Games

Graph-Based Search for Game Design

Daniel Ashlock, University of Guelph

Cameron McGuinness, University of Guelph

This article is the second in a tutorial series on the relationship between games, puzzles, and
combinatorial graphs. It introduces some classical and modern algorithms for permitting a
computer to play games and design games and puzzles using search-based procedural content
generation. These algorithms are applied in the evolutionary design of level maps.

1 Introduction

This article introduces algorithms that are useful
both for creating artificial intelligence (AI) play-
ers for games and for procedural content generation
(PCG) [1]. AI algorithms for playing games must
search the space of possible future moves, which
could require large amounts of time if the algo-
rithms are not clever about how these searches are
performed. The process of devising better search
methods is the basis for much of the research in
this area.

Procedural content generation covers a very
wide range of topics. It includes any algorith-
mic method for designing a game or part of
a game. This article introduces the topic and
presents search-based procedural content generation
(SB-PCG) [2] as a motivating example. SB-PCG
is demonstrated for creating maps for use in a
fantasy role-playing game.

Graph algorithms1 are algorithms that oper-
ate on or are structured by graphs. This article
introduces two types of graph algorithms that
are especially useful in game play and puzzle de-
sign. The first, tree search algorithms, operate on
a structure called a game tree. The second, path
finding algorithms, are used to search a game
board or map to find the most efficient set of
moves to reach an objective.

Figure 1. An example tree.

1.1 Graph Theory

The first article in this series [3] defined some ba-
sic graph theory terminology. We now introduce
additional terms for this article. A tree is a con-
nected graph with no closed paths. Figure 1 shows
an example tree with nine leaves and five internal
nodes. It is connected – it is possible to go from
any node to any other node by following connec-
tions in the tree – but there are no closed loops in
the structure.

A rooted tree is one that has a distinguished
node called a root. Rooted trees are typically dis-
played in layers relative to the root. An example
of a rooted tree is shown in Figure 2. Its root is
the unique vertex on level 1. For both sorts of tree,
a leaf is a vertex of degree 1 (with one adjacent
neighbour) that is not the root. The vertices with
degree greater than one are called internal nodes.

L1

L2 L2

L2 L3 L3 L3 L3 L3

L3 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4

Figure 2. A rooted tree with four levels.

2 Tree Search

Consider a two-player game in which the players
take turns moving. This situation can be natu-
rally structured as a tree. The root of the tree
is the starting (or current) position for the game.
The second level of the tree contains all the posi-
tions that can be reached with one move by the

1For examples, see: https://en.wikipedia.org/wiki/Book:Graph Algorithms

Ashlock, D. and McGuinness, C., ‘Graph-Based Search for Game Design’, Game & Puzzle Design, vol. 2, no. 2, 2016,
pp. 68–75. c© 2016


